AUTONOMOUS DECISION MAKING IN VERY LONG TRAVERSES (ADE)

You are here: Home » Acronyms, definitions and references

Acronyms, definitions and references

Definitions

Name

Description

Observation The current value of a component, either state variable or resource, also known as fact, which must be accepted by the AF.
Goal A desire value for a component within the time frame of the plan.
Guidance Process of guiding the rover through a terrain, this includes creation of a navigation map from Digital Elevation Map (DEM), planning a path on this map, estimating the required resources to achieve this path and reacting to the environment (hazards) while executing the path.
Navigation
Map
Map describing the understanding of the rover’s situation with respect to surface&level hazard, objects, terrain and sites of interest. Also can be referred to as a traversability map categorizing which area of the terrain is safe or unsafe to traverse by the rover.

 

Ref.

Title

[RD.1] European Robotics Forum, “The PERASPERA Roadmap” (11/03/2015)
[RD.2] PERASPERA consortium, “Master Plan of SRC activities”, PRSPR-ESA-T3 1-TN-D3 4, 2015
[RD.3] PERASPERA consortium, Compendium of SRC activities (for call 1)-v1.8.pdf, ”, PRSPR-ESA-T3 1-TN-D3.1 (2015)
[RD.4] GUIDELINES FOR STRATEGIC RESEARCH CLUSTER ON SPACE ROBOTICS TECHNOLOGIES HORIZON 2020 SPACE CALL 2016 (30/10/2015)
[RD.5] ECSS Secretariat. (ESA/ESTEC), “ECSS-E-70-11 Space Segment Operability” (August, 2005)
[RD.6]
  1. Van Winnendael, ESA/ESTEC Technical Note “Key Aspects of Onboard Software and Ground Control of Planetary Rovers” Draft 0.12
[RD.7] Cesta, A., Ocón, J, Rasconi, R, Sanchez-Montero, A.M. “Injecting On-Board Autonomy in a Multi-Agent System for Space Service Providing” Trends in Applied Intelligent Systems Volume 6096 of the series Lecture Notes in Computer Science pp 154-163
[RD.8]
  1. Gat, On “Three-Layer Architectures, In: Artificial Intelligence and Mobile Robots”, pages 195-210 MIT/AAAI Press (http://robotics.usc.edu/~maja/teaching/cs584/papers/tla.pdf).
[RD. 9]
  1. Alami et al. “An Architecture for Autonomy”. International Journal of Robotics Research, Vol. 17, No. 4
[RD. 10] http://www.esa.int/Our_Activities/Launchers/IXV
[RD. 11] http://exploration.esa.int/mars/
[RD. 12]
  1. Ceballos S. Bensalem, A. Cesta, L. de Silva, S. Fratini, F. Ingrand, J. Ocón. Orlandini, F. Py, K. Rajan, R. Rasconi, and M. van Winnendael, Bensalem, S., , “A Goal-Oriented Autonomous Controller for space exploration”
[RD. 13] Medina, A. Bidaux-Sokolovski, G. Binet, M. Avilés, J. Ocon, A. Ceballos and P. Colmenarejo “Outline of an Autonomy Framework for Space Mobile Robots” in Aerospace Robotics II ISBN-978-3-319-13853-4. Springer, 2015
[RD. 14]
  1. Alami Et al. “An Architecture for Autonomy”. International Journal of Robotics Research, Vol. 17, No. 4
[RD. 15]
  1. Ghallab et al RA. “Architecture and Tools for Autonomy in Space”
[RD. 16]
  1. Muscettola et al. “IDEA: Planning at the Core of Autonomous Reactive Agents”. American Association for Artificial Intelligence.
[RD. 17] AutoNav Team & Radio Nav Team, JPL. “Autonomous Optical Navigation (AutoNav) DS1 Technology Validation Report”http://nmp-techval-reports.jpl.nasa.gov/DS1/AutoNav_Integrated_Report_A.pdf
[RD. 18] JPL & NASA Ames Research Center. “Remote Agent Experiment DS1 Technology Validation Report” (2000)
[RD. 19]
  1. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand “An Architecture for Autonomy” LAAS-CNRS. International Journal of Robotics Research, Vol. 17, No. 4 (1998)
[RD. 20]
  1. Bernard, et.al, “Remote Agent Experiment: Final Report,” NASA Technical Report, Feb. 2000 available at: http://ic.arc.nasa.gov/projects/remote-agent/DS1-Tech-report.pdf (Feb, 2000)
[RD. 21] Steve Chien, Rob Sherwood, Daniel Tran, et al.  “Autonomous Science on the EO-1 Mission”, May 2013
[RD. 22] Bibliography: Elie Allouis, Tony Jorden, and Peter Falkner. Sample fetching rover concept and operation of a lightweight long-range rover for msr. In Global Space Exploration Conference, 2012.
[RD. 23] Muscettola N., G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt, “IDEA: Planning at the core of autonomous reactive agents”, in Proc IWPSS, Houston,.
[RD. 24] NASA/JPL CLARAty Robotic Software(http://claraty.jpl.NASA.gov/man/overview/index.php)
[RD. 25] Technology readiness levels handbook for space applications. Sept. 2008
[RD. 26] Software Considerations in Airborne Systems and Equipment certification RTCA DO-178C, Dec. 2008
[RD. 27] Medina, A,, Mollinedo, L., Kapellos, K.,, Crespo, C.(3), Poulakis, P.(3) “Design and realization of a rover autonomy testbed “ASTRA conference, 2015
[RD. 28] M.Perrotin1, E. Conquet1, P. Dissaux2, T. Tsiodras3, J. Hugues4 “The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.”, 2010
[RD. 29]
  1. Perrotin, J.-L. Terraillon, C. Honvault Taste: towards a space system development framework, Oct. 2015
[RD. 30]
  1. Ghallab et al RA. “Architecture and Tools for Autonomy in Space”
[RD. 31]
  1. Woods et Al., “On-Board Planning And Scheduling For The Exomars Mission”, Proc. of the DASIA 2006 – DAta Systems In Aerospace – Conference, Berlin, Germany 22-25 May 2006, (ESA SP-630, July 2006)
[RD. 32] SEEKER- http://www.ralspace.stfc.ac.uk/RALSpace/Areas+of+expertise/Technology/wwwstfc.ac.uk/RALSpace/Areas+of+expertise/Technology/Robotics/38488.aspx
[RD. 33] SAFER http://oro.open.ac.uk/40892/
[RD. 34]
  1. Galardini et al., DREAMS System – Distributed Robot and Automation Environment and Monitoring Supervision – Utilization in Europa, In the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2002), ESTEC, Noordwijk,
[RD. 35] European Cooperation for Space Standardization (ECSS). Space Engineering. Software – Part 1C. Noordwijk, The Netherlands: s.n., ECSS-E-40. (2009)
[RD. 36] European Cooperation for Space Standardization (ECSS). Space  product Assurance – Software product assurance Noordwijk, The Netherlands: s.n., ECSS-Q-ST-80C (2008)
[RD. 37] Joaquin Miller, Jishnu Mukerj et al.,.“MDA Guide Version 1.0.1”, omg/2003-06-01
[RD. 38] TASTE Website: http://taste.tuxfamily.org/wiki/index.php?title=Main_Page
[RD. 39] ECSS Secretariat. (ESA/ESTEC), “ECSS-E-70-11 Space Segment Operability” (August, 2005)
[RD. 40]
  1. Van Winnendael, ESA/ESTEC Technical Note “Key Aspects of Onboard Software and Ground Control of Planetary Rovers” Draft 0.12
[RD. 41]
  1. Gat, On “Three-Layer Architectures, In: Artificial Intelligence and Mobile Robots”, pages 195-210 MIT/AAAI Press(http://robotics.usc.edu/~maja/teaching/cs584/papers/tla.pdf).
[RD. 42]
  1. Ceballos S. Bensalem, A. Cesta, L. de Silva, S. Fratini, F. Ingrand, J. Ocón. Orlandini, F. Py, K. Rajan, R. Rasconi, and M. van Winnendael, Bensalem, S., , “A Goal-Oriented Autonomous Controller for space exploration”
[RD. 43] Elie Allouis, Tony Jorden, and Peter Falkner. Sample fetching rover concept and operation of a lightweight long-range rover for msr. In Global Space Exploration Conference, 2012
[RD. 44]
  1. Castaño, M. Judd, R. C. Anderson, and T. Estlin, “Machine learning challenges in Mars rover traverse science,” in 2003 ICML Workshop on Machine Learning Technologies for Autonomous Space, 2003
[RD. 45]
  1. R. Thompson, T. Smith, and D. Wettergreen, “Information-optimal selective data return for autonomous rover traverse science and survey.,” in ICRA, 2008, pp. 968–973
[RD. 46]
  1. Barnes, A. Shaw, P. Summers, R. Ward, M. Woods, M. Evans, G. Paar, and M. Sims, “AUTONOMOUS IMAGE BASED LOCALISATION FOR A MARTIAN AEROBOT,” presented at the ISPRS Symposium, Paris,, 2006
[RD. 47]
  1. R. Thompson, W. Abbey, A. Allwood, D. Bekker, B. Bornstein, N. Cabrol, R. Castaño, T. Estlin, T. Fuchs, and K. Wagstaff, Smart cameras for remote science survey. Citeseer, 2012
[RD. 48]
  1. L. Roush, “Essential autonomous science inference on rovers (EASIR),” in Aerospace Conference, 2004. Proceedings. 2004 IEEE, 2004, vol. 2, pp. 790–800
[RD. 49]
  1. Thompson, S. Niekum, T. Smith, and D. Wettergreen, “Automatic detection and classification of features of geologic interest,” in Aerospace Conference, 2005 IEEE, 2005, pp. 366–377
[RD. 50]
  1. Dunlop, “Automatic rock detection and classification in natural scenes,” Carnegie Mellon University, 2006
[RD. 51]
  1. R. Thompson and R. Castaño, “Performance comparison of rock detection algorithms for autonomous planetary geology,” in Aerospace Conference, 2007 IEEE, 2007, pp. 1–9
[RD. 52]
  1. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castaño, A. Davis, D. Mandl, B. Trout, S. Shulman, and others, “Using autonomy flight software to improve science return on Earth Observing One,” J. Aerosp. Comput. Inf. Commun., vol. 2, no. 4, pp. 196–216, 2005
[RD. 53]
  1. Castaño, T. Estlin, R. C. Anderson, D. M. Gaines, A. Castaño, B. Bornstein, C. Chouinard, and M. Judd, “OASIS: Onboard autonomous science investigation system for opportunistic rover science,” J. Field Robot., vol. 24, no. 5, pp. 379–397, 2007
[RD. 54]
  1. Woods, A. Shaw, D. Barnes, D. E. Price, D. Long, and D. Pullan, “Autonomous science for an ExoMars Rover-like mission,” J. Field Robot., vol. 26, no. 4, Apr. 2009
[RD. 55]
  1. R. Thompson, D. S. Wettergreen, and F. J. C. Peralta, “Autonomous science during large-scale robotic survey,” J. Field Robot., vol. 28, no. 4, pp. 542–564, 2011